METHODS USED TO ASSESS TCE EXPOSURE LEVELS, FREQUENCY, AND PROBABILITY IN EPIDEMIOLOGIC STUDIES

Presentation to the National Toxicology Program March 17, 2014

Patricia Stewart, Ph.D.

Stewart Exposure Assessments, LLC

OUTLINE

- Background on exposure assessment Frequent metrics of exposure General approaches to assessment
- TCE background
- Evaluation of studies: degreasing
- Summary and conclusions

BACKGROUND ON EXPOSURE ASSESSMENT

CONCEPT OF EXPOSURE ASSESSMENT

- Assessments are blinded
- Evaluate JOBS, not people
- Almost always airborne, with NO dermal
- Metrics generally evaluated: Probability

Intensity

Frequency

Confidence

PROBABILITY

In published studies:

- Definition usually not provided
- Ever/never (ignores probability)
- Estimate of probability
 As a score or descriptive (uncertain, possible, probable)
 As a category with identified quantitative levels

INTENSITY

In published studies:
 8-hour time-weighted average (full-shift)
 Average level during exposure/measurement
 Peak

- BUT:
- duration (above) not defined and
- if used measurements, duration of the measurements is not usually identified
- May be estimated:
 As a score or descriptive (low, medium, high)
 In relation to an occupational exposure limit
 In measurement units (e.g., ppm)

FREQUENCY

In published studies:

As a score or descriptive (always, often, rare)

Quantitative:

Number of days/week Number of hours over some unit of time (e.g., week or year)

CONFIDENCE

In published studies:

- A score or descriptive (definite, probable, uncertain)
- Unclear how confidence differs from probability
- Based on the quality of the data (the information on jobs and the published exposure literature and measurements) and the industrial hygienist's experience

Assessment Approaches

- Self-reports
- Job exposure matrices
- Subject-specific expert review

ACCURACY OF SELF-REPORTS

% agreement

Sensitivity

Specificity

N=420, 5 worksites

Joffe, 1992

ACCURACY OF SELF-REPORTS (Are you exposed? vs IH)

% of people saying yes (N=62)

Nurminen et al., 1995

JOB EXPOSURE MATRICES

Job title and/or industry	Decade	Probability, intensity, etc.
Secretary/bank	1950s	0
Degreaser	1970s-80s	2
SOC code 7674 (folding machine op)	1970s	1

- Often uses same expert s as subject-specific reviews (later slides)
- Jobs or industries often coded:

 If cohort study, can be company –specific: may not use codes
 If population-based: often use standard codes
 Economic, not exposure, based, so can include very diverse jobs or industries
 Often coding not straightforward

JOB EXPOSURE MATRICES (Agreement in Coding by Different Coders)

Study (codes)

Kromhout & Vermeulen, 2001

JOB EXPOSURE MATRICES

Job title and/or industry	Decade	Probability, intensity, etc.
Secretary/bank	1950s	0
Degreaser	1970s-80s	2
SOC code 7674 (folding machine op)	1970s	1

- Often uses same expert s as subject-specific reviews (later slides)
- Jobs or industries often coded
 If cohort study, can be company –specific: may not use codes
 If population-based: often use standard codes
 Economic, not exposure, based, so can include very diverse jobs or industries
 Often coding not straightforward
- Do not account for variability within a job

JOB EXPOSURE MATRICES Variability in Exposure Reported in a Single Study

JOB	SOURCE (SUBSTANCE)	FREQUENCY
Warehouseman	Driving forklift (gas/diesel exhaust)	0-40 hr/wk
Truck driver	Filling fuel tank (diesel)	0-14 times/wk
Secretary	Computer (>1970)	0-30 hr/wk
Computer programmer	Computer (EMF)	0-36 hr/wk

SUBJECT-SPECIFIC EXPERT-REVIEW

- Usually in case-control studies
- Requires manual review of all information
- Generally uses job or industry-specific questionnaires
- Decision-making rarely provided

ASSESSMENT PROCESS

Depends on type of study

- Cohort (or nested case-control)
- Population-based (or community- and hospital-based) case-control or registry

COHORT STUDY

- Usually based on a study of a small number of industries
- Process
 Abstract work histories of employees (job, department, start/end dates)
 Collect historic measurement data
 Conduct air monitoring

Process (cont)
 Collect historical records (organization charts, production records, job descriptions, etc.)

Interview long-term workers to understand: jobs and job tasks and how they relate to sources of exposure how sources have changed over time

Develop job groups

Process (cont)

Develop company-specific Job Exposure Matrix (JEM)

- 1) Estimate exposure for jobs that have current monitoring data (usually arithmetic mean)
- 2) Estimate exposure for jobs that don't have current monitoring data
- 3) Estimate historical exposures based on historical information

- Process (cont)
- Can be on a department or job or task level
- Can be for any metric (probability, intensity, frequency)
- Can be with or without regard to time
- Can be yes/no, score or quantitative

Limitations

- Based on available information
- No standard process
- Air measurements may not:
 be representative
 go back to beginning of study period
 cover necessary jobs

Limitations

- Personnel records may not reflect actual tasks or may be generic titles
- Interviews may be biased
- Development of job groups may not be straightforward

POPULATION-BASED CASE-CONTROL STUDIES

- Based on hundreds-thousands of work places
- Often collect entire work histories (job title, industry, dates, activities, tools and substances used)
- Sometimes additional questionnaires (modules) that are job/industry specific
- Jobs/industries often coded using standard coding systems (SOC,SIC)

POPULATION-BASED CASE-CONTROL STUDIES

- Process (excludes self-reports)
 Review published literature
 Develop estimate
 - JEM based on coded job title/industry OR
 - Subject-specific estimate based on reported information
- Can be for one or more metric (probability, frequency, intensity)
- Can be with or without regard to time
- Generally yes/no or a score

POPULATION-BASED CASE-CONTROL STUDIES

Limitations

- No standard procedures; little documentation
- No measurements; some use published literature
- Published literature is sorely missing on prevalence, intensity, and frequency
- No technical information available so applicability is unknown
- Occupational codes not developed for exposure but for economic reasons
- Unclear what factors are considered or how they are weighted

BACKGROUND ON TCE

TCE

Primary uses:

- Degreasing
 - Cold: typically nonchlorinated solvents
 Vapor degreaser: chlorinated solvents
 Typical use in cohort study, infrequent but
 - primary source in c-c studies
- Textile (no cohort studies, lower frequency & intensity in cc studies)
- Inks, glues, anesthesia (no cohort studies, lower frequency, lower intensity? in c-c studies)

USE OF CHLORINATED SOLVENTS AS A DEGREASER OVER TIME

	Probability of Use (%) (US)						
	1930s	1940s	1950s	1960s	1970s	1980s	1990s
C Tet	2	2	2	1	1	1	0
TCE	2	2	2	2	2	2	1
Perc	1	2	1	1	1	1	1
MeCl ₂	1	1	1	1	1	1	1
TCA	1	1	1	1	1	2	1
Chlorm	1	1	1	1	1	1	1

C Tet: carbon tetrachloride; TCE: trichloroethylene; perc: perchloroethylene; MeCl₂: methylene chloride; TCA: 1,1,1-trichloroethane; chlorm: chloroform

Scale 1:<10%; 2:10-49%

(US) OCCUPATIONAL STANDARD

OSHA (1972):

100 ppm 8-hour time-weighted average (TWA8)

200 ppm ceiling exposure limit, but can go up to 300 ppm for 5 min every 2 hours as a peak

TCE VAPOR DEGREASING (US)

Decade	Probability of TCE use (%)	Intensity? during exposure (ppm)	Frequency (hr/wk)	Confidence
1940-50s	>10-49	>100; >200 peak	2-10	Moderate
1960s	>10-49	>100; >200 peak	2-10	Moderate
1970s	>10-49	50-100; >200 peak	2-10	Moderate
1980s	<10	10-50; >100 peak	2-10	Moderate
1990s	<10	10-50; >100 peak	2-10	Moderate

Possible exposure levels estimated for presentation purposes

EVALUATION OF TCE EPIDEMIOLOGIC STUDIES: EXPOSURE ASSESSMENT

TCE STUDY EVALUATION

Evaluated exposure assessment methods in TCE studies blinded to the disease risk results

- Detail on jobs
- Job groups
- Description of assessment
- Measurements
- Type of Assessment
- Estimates
- Metrics
- Dermal exposure
- Other possible occupational confounders
- Evaluated methods

 Very low (ever/never, changes over calendar period not considered)

Henschler, 1995

Raaschou, 2003

 Low (ever/never with calendar time considered or semiquantitative without calendar period considered)

Bahr, 2011

Boice, 2006

Greenland, 1994

Lipworth, 2111

Morgan, 1998

Ritz, 1999

Wilcosky 1984

Moderate (semi-quantitative, calendar time considered)

Hansen, 2001

Radican 2008

Zhao, 2005

Vlaanderen, 2013

Moderate to high?? (biomonitoring, but only 1-3 measurements/person)

Anttila, 1995

Axelson, 1994

Hansen, 2013

- Likelihood of exposure: similar across all studies except Raaschou, 2003 [lower: blue vs white collar only]
 Vlaanderen, 2013 [lower: country-specific JEM]
- Intensity of exposure: similar across all studies except Henschler, 1995 (~200 ppm)
- Other studies had ranges and distributions of workers could vary over time and level and frequency

Very low (self-reports)
 Bruning, 2003 (self-report)
 Hardell, 1994
 Nordstrom, 1998

 Low (JEM, calendar time not considered or in another country):

Bruning, 2003 (JEM)

Deng, 2013

Dosemeci, 1999

Persson Fredrickson, 1999

Wang, 2009

Moderate (no measurements)

Constantini, 2008

Cocco, 2010

Miligi, 2006

Moore, 2010

Pesch, 2000 (expert review)

Pesch, 2000 (JEM)

Seidler, 2007

Vamvakas, 1998

Charbotel, 2006*

*Measurements available on EPA HERO website, but unclear how used

Stewart P, Stewart Exposure Assessments, LLC: Occupational Exposure Assessment to TCE. Presentation to the NTP, March 17, 2014

High (generally subject-specific)

Christensen, 2013

Cocco, 2013

Parent, 2000

Purdue, 2011*

Gold, 2012*

*Stewart, co-author

 Likelihood of exposure: similar across all studies except
 Charbotel, 2006 and Vamvakas, 1998
 [slightly higher]

Intensity of exposure: similar across all studies

SUMMARY AND CONCLUSIONS

- Few studies document actual exposure information on TCE
- Cohort studies more often positively identify presence of TCE than casecontrol studies
- Probably higher confidence than casecontrol studies

SUMMARY AND CONCLUSIONS

 Degreasing is the most typical operation studied
 Likely historical levels of >100 ppm and >200 ppm (peak)